
YAST:
Yet Another Stack Tracer!
by Hallvard Vassbotn

Have you ever had any really
hard-to-find bugs in your

code? If not, you can skip this
article, otherwise you’d better
keep on reading!

A stack-tracer is a utility that lets
you unwind the stack to find the
entry points that led up to the
current state of the program. This
is useful when you detect an error-
condition in a very general routine
and you want to display informa-
tion about how you got there. For
instance, it could be very handy to
combine the stack tracer which is
described here (and included on
this month’s disk, of course) with
an exit procedure that reports
run-time errors.

Background
The stack is used to store local
variables, parameters and return
addresses. For instance, after run-
ning the code in Listing 1 the stack
would look as shown in Figure 1.

The addresses shown on the left
are offsets relative to the BP regis-
ter. We simply use SS:BP as a
pointer to find the first stack frame.
Then we can follow a linked list of
stack frames by reading the saved
BP value at offset 0.

The values stored between the
current BP and the previous BP com-
prise one stack frame. The first
value will be CS:IP, or only IP if it
was a near call, of the caller,
followed by any parameters in
reverse order, followed by any
local parameters of the caller.

The tricky part is to decide
whether the call made was near or
far, and thus whether a complete
segment:offset pair or only an
offset is stored on the stack. The
code itself ‘knows’ this by a hard-
coded near or far return at the end
of the routine.

So, we could disassemble the
code until we reached a return
instruction, to find out which one

was used. However, this would be
difficult to implement (I don’t have
any disassembler source code
readily available...!) and could be a
bit slow to execute.

I chose a simpler but less reliable
method. I always assume that the
call is far. Then I check the assump-
tion by validating that the
segment:offset pair on the stack is
a valid pointer to a code segment.
This can only be done in protected
mode and Windows, so in real
mode I always assume far calls.

Even in protected and Windows
mode, this approach might fail,
reporting a far call when it is really
a near call. This will happen if the
word following the offset happens
to be a valid code segment
selector. To avoid this problem,
compile all your code with forced
far calls on (use the compiler direc-
tive {$F+}) or you can implement
the disassembler method that I
mentioned above...

Implementation
Listing 2 shows the unit, YAST.PAS,
which implements a simple but
effective stack trace utility.

I have compiled and tested it
with Delphi 1.0 and Borland Pascal

7.0 in real mode, protected mode
and Windows.

The stack tracer simply gathers
information about each stack
frame (one for each call-level in the
stack) and uses a user defined
callback function to report it back
to the user. There is a single
interfaced function, which is called
TraceStack, and is defined as
follows:

procedure Level2(P1, P2: word);
var
 L1: word;
 L2: word;
 L3: word;
begin
 L1 := 1;
 L2 := 2;
 L3 := 3;
 { Stop here! }
end;

procedure Level1(P1: word); near;
var
 L1: word;
 L2: word;
begin
 L1 := 4;
 L2 := 5;
 Level2(1, 2);
end;

begin
 Level1(3);
end.

➤ Listing 1

22 ...

20 [0000]

18 [P1=3]

16 [Return-IP] Near call, only offset is stored

14 [Prev-BP = 20]

12 [L1=4]

10 [L2=5]

 8 [P1=1]

 6 [P2=2]

 4 [Return-CS] Far call, Seg:Ofs is stored

 2 [Return-IP]

 0 [Prev-BP = 14] [SS:BP]

-2 [L1=1]

-4 [L2=2]

-6 [L3=3] [SS:SP]

➤ Figure 1

46 The Delphi Magazine Issue 7

procedure TraceStack(
 ReportStackFrame :
 TReportStackFrame;
 PrivateData: Pointer);

ReportStackFrame is the user
defined callback function that will
be called with information from the
stack. It has to be of the type:

TReportStackFrame =
 function(var StackInfo :
 TStackInfo; PrivateData :
 Pointer): boolean;

This means that it has to be
declared as:

function ReportStackFrame(
 var StackInfo: TStackInfo;
 PrivateData: Pointer):
 boolean; far;

You can choose your own function
name. The other parameter for
TraceStack is PrivateData: a general
user-defined pointer. This is simply
sent to your callback function and
gives the caller of TraceStack a
means of communication with the
callback routine. Without this, we
would have to use global variables.
This pointer can be anything from
nil to a pointer to a complex object
(eg a form) that you can use in the
callback routine to output the
stack information.

For each stack frame, the call-
back function ReportStackFrame will
be called with a TStackInfo record
(see Listing 2). Note the use of a
variant to alias the pointer fields
with corresponding offset and seg-
ment fields. This will save us from
some typecasting and makes the
code clearer. Table 1 explains the
TStackInfo record.

Example Usage
An example project using the stack
tracing unit is included on the disk
as TTDELPHI.DPR (plus there are
Borland Pascal examples too).
Perusing this code should help you
to implement stack tracing in your
own projects.

Usually, you will want to display
the logical segment number
(ReturnLog) and offset (ReturnOfs)
of the return address. Then you
might also display some sort of

stack dump to show the value of
parameters and local variables
(use ParamPtr and ParamSize).

The output shown in Figure 2
was created by running the Delphi
test program on my machine. This
might look like a lot of gibberish,
but by examining the stack trace
carefully and looking at the source
code we can wring out a lot of
information from this hex output.

If we take the two first lines for a
closer examination and combine
this with a MAP file we will find:

F 0001:002F =
 42BD,2677,00BD,26FF,000D,000D,

This is a far call from 0001:002F
which is line 22 in the TRACETST
unit called by the example project
(the Level3a procedure):

TraceStack(
 ExampleReportStackFrame,
 @FirstFlag);

Note that the parameters on the
stack will match the source code
parameters if we read the source
from right to left.

The first two words on the stack
(42BD,2677) give us the PrivateData
parameter, which is a pointer to
the FirstFlag boolean variable in

CallersBP Value of the callers BP (if you hadn’t guessed!).
It marks the start of a new stack frame. This is an
internal value and is usually not referenced from
the callback routine.

ParamSize The number of elements referenced by the
ParamPtr array.

DumpSize The number of elements referenced by the
DumpPtr array.

IsFar A flag indicating if the call was a far or a near call.

ReturnLog The logical segment number of the return address.
This is the address you will see in the MAP file. For
protected and Windows mode this will differ from
the actual selector value.

CallerAdr The far address taken directly from the stack. It will
not be valid if it is a near call. Normally not used
directly.

ReturnAdr The segment:offset pair for the return address.

DumpPtr A pointer into the stack to an array of raw bytes.
This also includes the raw caller’s address.

ParamPtr A pointer into the stack to an array of words. This
does not include the callers address and is usually
better suited to show to the user.

➤ Table 1: Details of the TStackInfo record

Starting stack trace:

CS=26FF, DS=2677, SS=2677

F 0001:002F = 42BD,2677,00BD,26FF,000D,000D,

F 0001:0053 = 0007,0006,0009,

F 0001:0077 = 0005,0004,0005,

F 0001:008E = 0003,0002,

N 0001:00A1 = 0001,

F 0001:00C1 =

➤ Figure 2

March 1996 The Delphi Magazine 47

the stack segment. Next are the off-
set and segment of the callback
routine (00BD,26FF). We can verify
this by seeing that SS=2677 and
CS=26FF.

Now we have found all the pa-
rameters to the TraceStack routine,
so the next data displayed will be
the value of the local variables in

unit YAST;
interface
type
 PBytes = ^TBytes;
 TBytes =
 array[0..(High(Word)-$f) div sizeof(byte)] of byte;
 PWords = ^TWords;
 TWords =
 array[0..(High(Word)-$f) div sizeof(word)] of word;
 TStackInfo = record
 CallersBP : word;
 DumpSize : word;
 ParamSize : word;
 IsFar : boolean;
 ReturnLog : word;
 case integer of
 1: (CallerAdr : pointer;
 ReturnAdr : pointer;
 DumpPtr : PBytes;
 ParamPtr : PWords);
 2: (CallerOfs : word;
 CallerSeg : word;
 ReturnOfs : word;
 ReturnSeg : word;
 DumpOfs : word;
 DumpSeg : word;
 ParamOfs : word;
 ParamSeg : word)
 end;
 TReportStackFrame = function(var StackInfo:
 TStackInfo; PrivateData: Pointer): boolean;
procedure TraceStack(ReportStackFrame: TReportStackFrame;
 PrivateData: Pointer);

implementation
uses
{$IFDEF WINDOWS}
 {$IFDEF VER80}
 WinProcs;
 {$ELSE}
 Win31;
 {$ENDIF}
{$ELSE}
 ValidPtr;
{$ENDIF}
type
 PtrRec = record
 Ofs, Seg : Word;
 end;
 TFarStackFrame = record
 CallersBP : word;
 case integer of
 1: (CallerAdr : pointer);
 2: (CallerOfs : word;
 CallerSeg : word)
 end;
 TNearStackFrame = record
 CallersBP : word;
 CallerOfs : word;
 end;
 PStackFrame = ^TStackFrame;
 TStackFrame = TFarStackFrame;

function GetSSBPPtr: pointer; inline
($8C/$D2 { MOV DX, SS }
/$89/$E8); { MOV AX, BP }

function LogSeg(Seg: word): word;
begin
{$IFDEF MSDOS}

 LogSeg := Seg;
{$ELSE}
 if Seg <> 0 then
 LogSeg := Word(Ptr(Seg, 0)^)
 else
 LogSeg := Seg;
{$ENDIF}
end;

procedure CorrectBP(var BP: word);
{ Handle Windows stack frames (ie Inc BP in far prolog code) }
begin
 if Odd(BP) then Dec(BP);
end;

function IsFarCode(Addr: pointer): boolean;
begin
{$IFDEF WINDOWS}
 IsFarCode := not IsBadCodePtr(Addr);
{$ELSE}
 IsFarCode := ValidCodePointer(Addr, 1);
{$ENDIF}
end;

function NextStackFrame(var StackFrame: PStackFrame;
 var StackInfo : TStackInfo): boolean;
var More: boolean;
begin
 More := (StackFrame^.CallersBP <> 0) and
 (StackFrame^.CallerAdr <> nil);
 if More then with StackInfo do begin
 CallersBP := StackFrame^.CallersBP;
 CorrectBP(CallersBP);
 CallerAdr := StackFrame^.CallerAdr;
 DumpPtr := Pointer(StackFrame);
 DumpSize := (CallersBP - PtrRec(StackFrame).Ofs);
 ParamPtr := Pointer(DumpPtr);
 ParamSize := DumpSize div 2;
 IsFar := IsFarCode(CallerAdr);
 if IsFar then begin
 ReturnAdr := CallerAdr;
 Dec(ParamSize, SizeOf(TFarStackFrame) div 2);
 Inc(ParamOfs , SizeOf(TFarStackFrame));
 end else begin
 ReturnOfs := CallerOfs;
 Dec(ParamSize, SizeOf(TNearStackFrame) div 2);
 Inc(ParamOfs , SizeOf(TNearStackFrame));
 end;
 ReturnLog := LogSeg(ReturnSeg);
 PtrRec(StackFrame).Ofs := StackFrame^.CallersBP;
 CorrectBP(PtrRec(StackFrame).Ofs);
 end;
 NextStackFrame := More;
end;

procedure TraceStack(ReportStackFrame:
 TReportStackFrame; PrivateData: Pointer);
var
 StackFrame : PStackFrame;
 StackInfo : TStackInfo;
begin
 FillChar(StackInfo, SizeOf(StackInfo), 0);
 StackInfo.ReturnSeg := CSeg;
 StackFrame := GetSSBPPtr;
 while NextStackFrame(StackFrame, StackInfo) and
 ReportStackFrame(StackInfo, PrivateData) do
 {Loop};
end;

end.

➤ Listing 2: The YAST unit

the Level3a procedure. These must
be matched up with the source
code by reading the source from
bottom to top.

So, the first 000D value is actually
the FirstFlag boolean variable. But
it only occupies the last byte of this
word, so the value is 00. The other
byte (with the value 0D) is simply
there to preserve stack alignment
and has an undefined value.

The last 000D value is the C local
word variable, which makes sense,
because it should be the sum of 6
and 7 which is 13 in decimal or 0D
in hex.

To see what parameters Level3a
was called with, we have to look at
the next stack frame:

F 0001:0053 = 0007,0006,0009,

48 The Delphi Magazine Issue 7

This shows that Level3a was called
as a far routine from 0001:0053 or
line 30, which is the Level3b rou-
tine. The parameters to Level3a
were B=7 and A=6. In Level3b there
was a local word variable with the
value 9. This makes sense as the C
variable should have the sum of 4
and 5.

Continuing like this we can
probably find out a lot more why a
certain error condition is met.

Possible Improvements
The logic to decide if a call is far or
near can be made smarter by using
disassembly to find the next
return-instruction. There could be
other ways of doing this as well.
Note also that the code has not
been tested extensively with
TCollection-type callbacks, or
callbacks from DLLs, etc.

To show more information about
the state of the program, one could
dump out selected global vari-
ables, dump a raw output of the
data segment to match up with the
globals shown in the MAP file, etc.

A nice improvement would be to
detect if there is debug information
in the EXE file and find the unit, line
number, procedure and parameter
names instead of only the raw data
it displays today.

Conclusion
With a stack tracer tool such as the
one I’ve presented here, you are
better equipped to track down
errors and bugs that would other-
wise be very difficult to find. A real
debugger (like Turbo Debugger) is
of course better to use when you
are in the development phase, but
for error-reporting at user-sites,
automatic logging with a stack
trace facility could save your day
(and possibly your contract!).

Hallvard Vassbotn lives and works
in Norway can be contacted by
email at hallvard@falcon.no

March 1996 The Delphi Magazine 49

	Background
	Implementation
	Example Usage
	Possible Improvements
	Conclusion

